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LEITER TO THE EDITOR 

Orbiting and surface waves 
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Dipartimento di Fisica dell’Universit8, Istituto Nazionale di Fisica Nucleare-Sezione di 
Genova, Genova, Italy 

Received 23 September 1985 

Abstract. In the framework of a semiclassical approximation, the singular trajectories-as 
well as the analytical ones-are considered. As a result one exhibits the close analogy 
between orbiting and surface waves. 

It has been shown (Knoll and Schaeffer 1976) that in the limit of h -$ 0 the scattering 
amplitude can be written as a sum of terms, each of them being associated with a 
trajectory. However, until now, this procedure has not been applied to the case of a 
purely real potential, due to the orbiting singularity. The purpose of this letter is to 
outline a method for extending the semiclassical theory to this case; in this way we 
single out, on the one hand, ‘classical’ effects like rainbow and orbiting (Ford and 
Wheeler 1959), and on the other hand, typical diffractive effects like surface waves 
(Di Salvo and Viano 1982, 1984, Keller 1958, Levy and Keller 1959, Nussenzveig 1969). 
We refer to a central (real) nuclear potential, such that the radial component of the 
momentum has three and only three turning points, I , ,  r2 and r 3 ,  according to the 
convention adopted by Brink and Takigawa (1977); however our treatment could be 
extended to other cases, as we shall see. 

We begin by analysing the trajectories which give a contribution to the scattering 
process. Besides the analytical (real and complex) trajectories (Knoll and Schaeffer 
1976), one has to take into account the singular trajectories (Berry and Mount 1972). 
These last are particularly important when a classical trajectory grazes a surface where 
the potential varies rapidly; in our case, since orbiting-i.e. the logarithmic divergence 
of the deflection function-is produced just by the rapid variation of the nuclear 
potential, we shall take into account the singular trajectories propagating along the 
surface of the sphere with a radius equal to the orbiting radius rI2 (such a surface 
shall be called, from now on, 3). 

For later convenience we define A as the classical angular momentum and we call 
A I 2  the orbiting angular momentum. 

Let us consider, firstly, the analytical trajectories. Among the real trajectories, those 
with A > h I 2  are either of ‘Coulomb’ type or of ‘nuclear’ type (Knoll and Schaeffer 
1976), whereas those with A < A l 2  penetrate inside Z and get out of it without any 
internal reflections; the remaining trajectories are complex and describe the propagation 
in the dark side of the rainbow (Berry 1966), the direct reflection outside Z and the 
(single or multiple) reflection inside Z; in particular the trajectories with Re A > A I *  
may penetrate inside Z by the tunnel effect across the barrier of the effective potential. 
Now multiple reflection causes resonances at some particular energies, such that the 
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angular momentum is as close as possible to a half-integer value; in this case the 
internal reflection coefficient has a relative maximum. Moreover the logarithmic 
divergence of the WKB deflection function at A,, is smoothed off by barrier penetration 
effects, so as to have a minimum, say -So, close to A I ,  (Ford and Wheeler 1959); 
therefore the ‘classical’ trajectory with angular momentum A,, has to be intended to 
be modified by these corrective terms; we shall return to this point later on. 

As regards the singular trajectories, these behave like the diffracted rays in optics 
(Keller 1958): they consist of two branches of the ‘classical’ trajectory of angular 
momentum A 1 2 ,  joined smoothly by an arc of geodesics on Z; moreover the surface 
ray may generate one or more ‘shortcuts’, i.e. branches of classical trajectory which 
penetrate inside E and are tangential to this surface. Other singular trajectories are 
generated by the complex trajectory of angular momentum A,, such that the turning 
points r2 and r, coincide, since this trajectory also has a divergent deflection angle. 
These surface waves are worth being mentioned, despite theii negligible contribution 
to the scattering amplitude, since they travel from the ‘shadow’ region to the ‘lit’ region, 
similarly to those which were exhibited mathematically by Nussenzveig (1969) in the 
case of a sharp-edged sphere. 

The probability amplitude to be associated with each trajectory may be determined 
by applying the Hamilton-Jacobi equation and the transport equation (Knoll and 
Schaeffer 1976, Di Salvo and Viano 1982,1984) to each analytical trajectory (or branch 
of analytical trajectory). As regards the singular trajectories, one has to apply the rules 
stated by Levy and Keller (1959) (see also Di Salvo and Viano 1982, 1984, Nussenzveig 
1969) for the diffraction by a smooth object; at this stage some proportionality 
coefficients-like decay exponents, diffraction coefficients, limiting refraction or limit- 
ing (internal) reflection coefficients-are left undetermined. Below, we are going to 
outline a method which allows us to find a relationship between these coefficients and 
the nuclear potential; detailed proofs and generalisations are left to a forthcoming 
paper. 

To this end we recall the approximate scattering amplitude written by Brink and 
Takigawa (1977) for a nuclear plus Coulomb potential. Using the Poisson sum formula 
and taking the Debye expansion of the S function (Ami  and Renna 1981), it can be 
shown that the scattering amplitude can be written as 

where 

and 

T ~ ( A  ) = 8, + i m (  1 - aP,,,) +pa, , (A ) + f ( p + 1 )  log[ N ( ~ E ) ]  (2a) 

8 ,  is the WKB phase shift relative to the trajectory of angular momentum A which has 
only one turning point, at r = r , ;  the rem-tining functions, i.e. &,(A),  E and N(iE), 
are defined in the paper by Brink and Takigawa (1977). In an asymptotic evaluation 
for h + 0 of the integrals (2) one has to determine the locations of the saddle points 
of the phases of such integrals. These are given by the roots of the equation 

@‘(A) = *6-2m.rr (3)  
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where O p ( A )  = 2 dqp/dA is the deflection function, which results in it being smoothed 
off at A = A 1 2 ,  the singularities of 2qp and 2S32 being compensated exactly by the 
singularity of i log[ N ( ~ E ) ]  at the orbiting angular momentum. Therefore the real part 
of each deflection function presents a minimum, -6, = -( 6,+p6, ) ,  close to A 1 2 ,  6, 
being the amplitude of the arc corresponding to the shortcut. 

Now if the deflection angle, a', is greater than -ap, it can be shown that the 
asymptotic evaluation of each integral (2) is conveniently made by deforming the path 
of integration in order to coincide with the steepest descent paths of the saddle points. 

On the other hand, if 6'< -ap, one has to consider the contribution of the residues 
at the poles of the integrand; these last are of pth order and fulfil the equation 

E(A)=i(n+;) n 2 0 .  (4) 

This equation indicates that the poles lie in the first quadrant of the complex A plane, 
on a line which crosses the real axis perpendicularly at A = A 1 2 .  

Therefore the asymptotic evaluation of the scattering amplitude (1) consists of two 
sums, one over the residues at the poles and the other over the saddle points. Com- 
parison with the approximate scattering amplitude suggested above indicates that the 
saddle point contributions correspond to the analytical trajectories, whereas the 
residues at the poles correspond to the singular trajectories; in any case the pth term 
represents a trajectory which has p branches inside E. Such a comparison allows us 
also to determine the above-mentioned proportionality coefficients once the potential 
is given; of course these coefficients may be determined numerically. However for n 
sufficiently small and rI2( pl VS1)'12(2fi)-' >> 1 (a condition which is frequeiitly met in 
those cases of interest) one can give some approximate analytical formulae. For the 
decay exponents we have 

a, = (n+l)T:2(PlV);l)1/2/fiA12 ( 5 )  

where p is the mass of the projectile and Vl;, is the value of the second derivative of 
the effective potential at the barrier top. Similarly for the diffraction coefficients we get 

Lastly the limiting refraction coefficients and the direct internal limiting reflection 
coefficients are given, respectively, by 

and 

R22 = -3i/(2.n)If2 (d/dz)[(z+ n)T(z)lZ,-, . 
Let us conclude this letter with some observations. 
(i) The surface wave contribution is very similar to the orbiting amplitude, since 

both of them are exponentially damped; moreover the decay exponent corresponding 
to n = 0 in equation ( 5 )  coincides with the one determined by Ford and Wheeler (1959) 
relative to the trajectories with angular momentum slightly greater than A 1 2 .  

(ii) The present treatment could be extended to the case when the potential has 
an absorptive part; in this case the number of terms of the Debye expansion to be 
considered is reduced, according to the intensity of the absorption. 
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(iii) The surface wave contribution, together with the shortcut mechanism, is very 
important in the explanation of the anomalous large angle scattering (ALAS) in nuclear 
physics (Di Salvo and Viano 1982, 1984, Di Salvo 1983). Moreover in the semiclassical 
treatment of Brink and Takigawa (1977) two Debye terms, corresponding to p = 0 and 
p = 1, are needed for explaining the features of ( Y - ~ O C ~  elastic scattering at E = 29 MeV. 

(iv) Lastly the treatment presented now could be generalised to other potentials, 
like the atomic ones; also in the case of local, non-spherical potentials an extension 
could be made, thanks to the localisation principle (Levy and Keller 1959). 
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